Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Res ; 197: 111015, 2021 06.
Article in English | MEDLINE | ID: covidwho-1303514

ABSTRACT

The advent of COVID-19 has kept the whole world on their toes. Countries are maximizing their efforts to combat the virus and to minimize the infection. Since infectious microorganisms may be transmitted by variety of routes, respiratory and facial protection is required for those that are usually transmitted via droplets/aerosols. Therefore this pandemic has caused a sudden increase in the demand for personal protective equipment (PPE) such as gloves, masks, and many other important items since, the evidence of individual-to-individual transmission (through respiratory droplets/coughing) and secondary infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). But the disposal of these personal protective measures remains a huge question mark towards the environmental impact. Huge waste generation demands proper segregation according to waste types, collection, and recycling to minimize the risk of infection spread through aerosols and attempts to implement measures to monitor infections. Hence, this review focuses on the impact of environment due to improper disposal of these personal protective measures and to investigate the safe disposal methods for these protective measures by using the safe, secure and innovative biological methods such as the use of Artificial Intelligence (AI) and Ultraviolet (UV) lights for killing such deadly viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Artificial Intelligence , Humans , Pandemics , Personal Protective Equipment , Solid Waste
2.
Environ Res ; 201: 111643, 2021 10.
Article in English | MEDLINE | ID: covidwho-1293779

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) still remains on an upsurge trend. The second wave of this disease has led to panic in many countries, including India and some parts of the world suffering from the third wave. As there are no proper treatment options or remedies available for this deadly infection, supportive care equipment's such as oxygen cylinders, ventilators and heavy use of steroids play a vital role in the management of COVID-19. In the midst of this pandemic, the COVID-19 patients are acquiring secondary infections such as mucormycosis also known as black fungus disease. Mucormycosis is a serious, but rare opportunistic fungal infection that spreads rapidly, and hence prompt diagnosis and treatment are necessary to avoid high rate of mortality and morbidity rates. Mucormycosis is caused by the inhalation of its filamentous (hyphal form) fungi especially in the patients who are immunosuppressed. Recent studies have documented alarming number of COVID-19 patients with mucormycosis infection. Most of these patients had diabetes and were administered steroids for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and were consequently more prone to mucormycosis. Hence, the present review emphasizes mucormycosis and its related conditions, its mechanism in normal and COVID-19 affected individuals, influencing factors and challenges to overcome this black mold infection. Early identification and further investigation of this fungus will significantly reduce the severity of the disease and mortality rate in COVID-19 affected patients.


Subject(s)
COVID-19 , Mucormycosis , Humans , Mucormycosis/epidemiology , Mucormycosis/therapy , Pandemics , Risk Assessment , SARS-CoV-2
3.
Curr Opin Environ Sci Health ; 17: 72-81, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-807127

ABSTRACT

Coronavirus disease 2019 (COVID-19) has grown to be global public health emergency. The biosurfactants (BSs) are surface-active biomolecules with unique properties and wide applications. Several microbes synthesize secondary metabolites with surface-active properties, which have a wide range of anti-inflammatory and anti-viral roles. The monocytes and neutrophils are activated by bacteria, which subsequently result in high secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-12, Il-18 and IL-1ß) and toll-like receptors-2 (TLR-2). Following the inflammatory response, BSs induce the production of cationic proteins, reactive oxygen species (ROS) and lysozyme, and thus can be used for therapeutic purposes. This article provides recent advances in the anti-inflammatory and antiviral activities of BSs and discusses the potential use of these compounds against COVID-19, highlighting the need for in-vitro and in-vivo approaches to confirm this hypothesis. This suggestion is necessary because there are still no studies that have focused on the use of BSs against COVID-19.

4.
Curr Opin Environ Sci Health ; 17: 8-13, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-543058

ABSTRACT

The novel coronavirus disease 2019, a pandemic of global concern, caused by the novel severe acute respiratory syndrome coronavirus 2 has severely revealed the need for public monitoring and efficient screening techniques. Despite the various advancements made in the medical and research field, containment of this virus has proven to be difficult on several levels. As such, it is a necessary requirement to identify possible hotspots in the early stages of any disease. Based on previous studies carried out on coronaviruses, there is a high likelihood that severe acute respiratory syndrome coronavirus 2 may also survive in wastewater. Hence, we propose the use of nanofiber filters as a wastewater pretreatment routine and upgradation of existing wastewater evaluation and treatment systems to serve as a beneficial surveillance tool.

5.
Sci Total Environ ; 729: 139021, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-125023

ABSTRACT

The novel Coronavirus disease 2019 (COVID-19) is an illness caused due to Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The World Health Organization (WHO) has declared this outbreak a global health emergency and as on April 24, 2020, it has spread to 213 countries, with 25,91,015 confirmed cases and 742,855 cases have been recovered from COVID-19. In this dreadful situation our team has already published an article in the Science of the Total Environment, which elaborates the various aspects of the SARS-CoV-2 infection. In this situation, it is imperative to understand the possible outcome of COVID-19 recovered patients and determine if they have any other detrimental illnesses by longitudinal analysis to safeguard their life in future. It is necessary to follow-up these recovered patients and performs comprehensive assessments for detection and appropriate management towards their psychological, physical, and social realm. This urges us to suggest that it is highly important to provide counselling, moral support as well as a few recommended guidelines to the recovered patients and society to restore to normalcy. Epidemiological, clinical and immunological studies from COVID-19 recovered patients are particularly important to understand the disease and to prepare better for potential outbreaks in the future. Longitudinal studies on a larger cohort would help us to understand the in-depth prognosis as well as the pathogenesis of COVID-19. Also, follow-up studies will help us provide more information for the development of vaccines and drugs for these kinds of pandemics in the future. Hence, we recommend more studies are required to unravel the possible mechanism of COVID-19 infection and the after-effects of it to understand the characteristics of the virus and to develop the necessary precautionary measures to prevent it.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Follow-Up Studies , Humans , SARS-CoV-2
6.
Sci Total Environ ; 725: 138277, 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-31576

ABSTRACT

The novel Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, which is the causative agent of a potentially fatal disease that is of great global public health concern. The outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment regarding the urgency of the situation. The COVID-19 pandemic has entered a dangerous new phase. When compared with SARS and MERS, COVID-19 has spread more rapidly, due to increased globalization and adaptation of the virus in every environment. Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care. Hence, the recent outburst of COVID-19 highlights an urgent need for therapeutics targeting SARS-CoV-2. Here, we have discussed the structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response. Further, the current treatment options, drugs available, ongoing trials and recent diagnostics for COVID-19 have been discussed. We suggest traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL